About Us
Founded in 1944, the American Committee for the Weizmann Institute of Science develops philanthropic support for the Weizmann Institute in Israel, and advances its mission of science for the benefit of humanity.
Dec 20, 2021... REHOVOT, ISRAEL—December 20, 2021—Prof. Eldad Tzahor peered into his microscope one day and saw steak. As part of Tzahor’s research into repairing muscle tissue, Dr. Tamar Eigler, a postdoctoral fellow in his lab at the Weizmann Institute of Science, had been experimenting with cultured muscle stem cells. One of these experiments had produced the surprising sight that appeared before Tzahor’s eyes: The cells had started fusing into tiny fibers that thickened rapidly, within hours creating large muscle fibers resembling those in whole cut meat.
Apr 04, 2022... REHOVOT, ISRAEL—April 4, 2022—Supporting actors sometimes steal the show. In a new study published today in Cell, researchers headed by Prof. Ido Amit at the Weizmann Institute of Science have shown that supporting cells called fibroblasts, long viewed as uniform background players, are in fact extremely varied and vital. A subset of these cells, according to the study, may lie at the origins of scleroderma—a rare autoimmune disease. The findings open a new direction for developing a future therapy against this devastating, incurable disorder.
May 25, 2022...
REHOVOT, ISRAEL – May 25 2022 – Our family origins tend to shape our future in many ways. A Weizmann Institute of Science study, published today in Nature, found that the same holds true for blood vessels. The researchers discovered blood vessels forming from unexpected progenitors and went on to show that this unusual origin determines the vessels’ future function.
“We found that blood vessels must derive from the right source in order to function properly – it’s as if they remember where they came from,” says team leader Prof. Karina Yaniv.
Aug 01, 2022... REHOVOT, ISRAEL—August 1, 2022— An egg meets a sperm – that’s a necessary first step in life’s beginnings, and it’s also a common first step in embryonic development research. But in a Weizmann Institute of Science study published today in Cell, researchers have grown synthetic embryo models of mice outside the womb by starting solely with stem cells cultured in a petri dish – that is, without the use of fertilized eggs. The method opens new horizons for studying how stem cells form various organs in the developing embryo, and may one day make it possible to grow tissues and organs for transplantation using synthetic embryo models.
Aug 19, 2022... REHOVOT, ISRAEL—August 19, 2022—Non-nutritive sweeteners – also known as sugar substitutes or artificial sweeteners – are supposed to deliver all the sweetness of sugar without the calories. But a controlled trial conducted by Weizmann Institute of Science researchers, published today in Cell, suggests that contrary to previous belief, such sweeteners are not inert: They do have an effect on the human body. In fact, some can alter human consumers’ microbiomes – the trillions of microbes that live in our gut – in a way that can change a person’s blood sugar levels. And the effects these sweeteners produce vary greatly among different people.
Dec 08, 2022... Can the Collective Wisdom of Bugs Help Solve Human Problems?
Feb 03, 2023... REHOVOT, ISRAEL— February 3, 2023 Arthropods crawl and buzz around us in the wild and on farmlands, on the street and at home, under our floors and in our plumbing systems, even in our food and on our bodies. But while we often are inconvenienced by this group of invertebrates – which comprises more than a million species, including all insects – their absence would be catastrophic: Arthropods are ecosystem engineers that pollinate our crops, turn over agricultural soils and sustain an enormous diversity of predators, from warblers to wolverines, that feed on them directly or indirectly.
https://www.weizmann-usa.org/news-media/news-releases/treating-a-heart-attack-before-it-happens/
Mar 08, 2023...
REHOVOT, ISRAEL—March 8, 2023— Imagine getting treatment for a perfectly healthy young heart that would allow it to recover from an otherwise devastating injury decades later.
If you think this prospect seems farfetched, you are not alone. Until recently, Prof. Eldad Tzahor, whose lab at the Weizmann Institute of Science studies heart tissue regeneration, had also considered it science fiction. After all, cardiovascular diseases, which are humanity’s leading cause of death, aren’t generally perceived as something one can prepare for through preventive treatment. But Tzahor and researchers in his lab have now activated a cellular mechanism in healthy mouse hearts that makes these mice resilient to future heart attacks – even when they occur months later.