About Us
Founded in 1944, the American Committee for the Weizmann Institute of Science develops philanthropic support for the Weizmann Institute in Israel, and advances its mission of science for the benefit of humanity.
Aug 01, 2022... REHOVOT, ISRAEL—August 1, 2022— An egg meets a sperm – that’s a necessary first step in life’s beginnings, and it’s also a common first step in embryonic development research. But in a Weizmann Institute of Science study published today in Cell, researchers have grown synthetic embryo models of mice outside the womb by starting solely with stem cells cultured in a petri dish – that is, without the use of fertilized eggs. The method opens new horizons for studying how stem cells form various organs in the developing embryo, and may one day make it possible to grow tissues and organs for transplantation using synthetic embryo models.
Apr 23, 2023... REHOVOT, ISRAEL—April 27, 2023—To get life-giving oxygen into every cell, the human body produces two to three million oxygen-carrying red blood cells, or erythrocytes, each second – about one-quarter of all the new cells that are produced in the body at any one time. This process is controlled by the hormone erythropoietin, commonly known as EPO, which works by binding to cells in the bone marrow that are poised to become erythrocytes, promoting their proliferation. Erythropoietin was discovered decades ago, but the identity of the cells that make this hormone remained unknown – until now.
May 24, 2023...
To get life-giving oxygen into every cell, the human body produces two to three million oxygen-carrying red blood cells each second, a process controlled by the hormone erythropoietin (EPO), which works by binding to cells in the bone marrow and promoting their proliferation. Discovered decades ago, the identity of the cells that make this hormone remained unknown – until now.
In a new paper, published in Nature Medicine, Weizmann scientists from Prof. Ido Amit’s lab and colleagues from Israel, Europe, and the United States have identified a rare subset of kidney cells that are the main producers of EPO in the human body, a discovery that has transformative potential for patients with anemia.