Search Results

Showing results 21-22 of 22 for 'Nanoscience'


  • shutterstock_521067919_lego blocks.jpg
    LEGO Proteins Revealed

    The proteins in our bodies are social molecules. But now and again, new ties between proteins can get you into trouble. For example, when hemoglobin – the protein complex that carries oxygen in our blood – undergoes just one mutation, the complexes stick to one another, stacking like Lego blocks to form long, stiff filaments. These filaments, in turn, elongate the red blood cells found in sickle-cell disease. For over 50 years, this has been the only known textbook example in which a mutation causes these filaments to form. According to Dr. Emmanuel Levy and his group in the Weizmann Institute of Science’s Structural Biology Department, Lego-like assemblies should have formed relatively frequently during evolution, and so they asked: How easy is it to get proteins to stack into filaments? Their answer, which was recently published in Nature, may have implications for both biological research and nanoscience.

    /news-media/news-releases/lego-proteins-revealed
  • shutterstock_silk-1168x657[1].jpg
    Silk Micro-Cocoons Will Transport Proteins in Food, Drugs

    Scientists from Israel and abroad have designed microscopic silk capsules that can serve as a protective environment for the transport of fragile protein “cargo” for cosmetic, food and pharmaceutical applications — particularly the delivery of drugs within the body. The collaborative research, performed by an international team of academics from the Weizmann Institute of Science in Israel; the Universities of Cambridge, Oxford and Sheffield in the UK; and the ETH in Switzerland, was reported in Nature Communications on July 19.

    /news-media/in-the-news/silk-micro-cocoons-will-transport-proteins-in-food-drugs