About Us
Founded in 1944, the American Committee for the Weizmann Institute of Science develops philanthropic support for the Weizmann Institute in Israel, and advances its mission of science for the benefit of humanity.
Feb 14, 2022... Heart disease is the number one cause of death in the world, surpassing all cancers combined. One of the major difficulties in coming up with new therapies lies in translating basic research findings, typically obtained with mice, into a treatment that works in humans. This gap can be filled by experimenting on pigs, whose hearts beat at a rhythm similar to that of humans and otherwise provide a faithful model – both size-wise and physiologically – of human cardiovascular function.
May 31, 2022... REHOVOT, ISRAEL—May 31, 2022—Ketamine, a well-known anesthetic used in smaller doses as a party drug, was hailed as a “new hope for depression” in a Time magazine cover story in 2017. Two years later, the arrival of the first ketamine-based antidepressant – the nasal spray esketamine, made by Johnson & Johnson – was applauded as the most exciting development in the treatment of mood disorders in decades. Yet the U.S. Food and Drug Administration still limits the spray’s use. It is mainly given to depressed patients who have not been helped by other therapies – in part, because the new drug’s mechanism of action is insufficiently understood, leading to concerns over its safety.
Jun 27, 2022... REHOVOT, ISRAEL—June 27, 2022— Of all the fungi that live in the human body, the most infamous is probably the yeast Candida. This distant cousin of baker’s yeast is notorious for causing various types of thrush that can be a major nuisance, but it can also lead to an invasive infection that may, on occasion, prove fatal. In a study published today in Nature Immunology, a Weizmann Institute of Science research team headed by Prof. Jakub Abramson uncovered a previously unknown defense mechanism employed by the immune system in fighting Candida infections.
Aug 01, 2022... REHOVOT, ISRAEL—August 1, 2022— An egg meets a sperm – that’s a necessary first step in life’s beginnings, and it’s also a common first step in embryonic development research. But in a Weizmann Institute of Science study published today in Cell, researchers have grown synthetic embryo models of mice outside the womb by starting solely with stem cells cultured in a petri dish – that is, without the use of fertilized eggs. The method opens new horizons for studying how stem cells form various organs in the developing embryo, and may one day make it possible to grow tissues and organs for transplantation using synthetic embryo models.
Sep 08, 2022... REHOVOT, ISRAEL—September 8, 2022—Blood tests – simple, noninvasive and economically feasible – promise to become the next major milestone in cancer diagnosis. However, most of these tests, dubbed liquid biopsies, are currently not reliable enough for widespread use. A new, multiparameter approach developed at the Weizmann Institute of Science may lead to a blood test that will diagnose cancer with unprecedented accuracy. This research is being published today in Nature Biotechnology.
https://www.weizmann-usa.org/news-media/feature-stories/tumors-are-prime-real-estate-for-fungi/
Nov 13, 2022... Bacteria have been shown to affect cancer growth, metastasis, and response therapy, but now, according to a recently published study by Weizmann scientists, fungal activity is “a new and emerging hallmark of cancer,” says Prof. Ravid Straussman of the Weizmann’s Molecular Cell Biology Department and co-leader of a recent study by researchers at the Weizmann Institute and UC-San Diego. This discovery will likely lead to better outcomes in human survival of many different cancers.
https://www.weizmann-usa.org/news-media/feature-stories/maya-schuldiner-connecting-organelles/
Feb 15, 2022... Prof. Maya Schuldiner of Weizmann’s Department of Molecular Genetics studies how cells function, which in turn can help understand disease – particularly, rare diseases.In the end, it’s all about making a connection. In their recent study, Prof. Maya Schuldiner and her team from the Weizmann Institute of Science’s Molecular Genetics Department uncover for the first time how the cell’s Most Valuable Players – the nucleus and mitochondria – communicate through the formation of dedicated contact sites. Being able to tune in on these correspondences will allow scientists to better understand conditions where they are disrupted from cancer to neurodegenerative diseases. These findings join a series of recent discoveries in the budding field of contact site biology, some of which were made in Schuldiner’s lab.
Jan 25, 2023...
Researchers have for years tried to discover what determines “resilience to stress,” a term describing the ability to adapt to difficult situations and to overcome adversity. Is it acquired through experience, or is there a tendency to easily recover from stress possibly ingrained in us from a very early age or even from birth?
A new study lead by Prof. Gil Levkowitz of the molecular cell biology and molecular neuroscience departments at the Weizmann Institute of Science in Rehovot has revealed an important piece of this puzzle. The study examined zebrafish – small, black-and-white-striped, transparent fish whose natural habitat spans rivers, ponds and rice paddies in Pakistan, Myanmar, Nepal and India.
Apr 23, 2023... REHOVOT, ISRAEL—April 27, 2023—To get life-giving oxygen into every cell, the human body produces two to three million oxygen-carrying red blood cells, or erythrocytes, each second – about one-quarter of all the new cells that are produced in the body at any one time. This process is controlled by the hormone erythropoietin, commonly known as EPO, which works by binding to cells in the bone marrow that are poised to become erythrocytes, promoting their proliferation. Erythropoietin was discovered decades ago, but the identity of the cells that make this hormone remained unknown – until now.
May 18, 2023... Dr. Moran Shalev Benami discusses her research on the tiniest details of the human brain: proteins. Using cryo-electron microscope (cryoEM), she works to understand and identify the proteins’ function and how proteins work together.